Hello, my name is Lorelei Rutledge and this is my colleague Madison Donnelly. Today, we are going to share some strategies for managing and maintaining your scholarly profile.

Lorelei Rutledge
Assistant Librarian, Research and User Services
Faculty Services
lorelei.rutledge@utah.edu
801-585-3922

These quotes from Stegner’s dedicatory address titled “The Book and the Great Community”:

“So there is virtue in the creation of a great library, even in a time which repudiates so much of the tradition, which has made the specialty of the non-book, which has cultivated instant communication …. that will let read Hamlet in twelve minutes if it hasn’t already read hamlet in comic book form. “

“And so it strikes me that to erect a great library in the year 1968 is an act of stubborn and sassy faith, an affirmation in the spirit of the philosopher who...
said, If I knew the world was going to end tomorrow, I would plant a tree."
Goals & Objectives

- Use library databases too find information about your scholarly impact
- Use Google, ORCID Scopus & Web of Science to build your scholarly profile
- Find journals with high impact factor to broaden your impact.
- Learn how librarians can help you maintain your professional online profile

During this presentation, we are going to talk about different ways that you can build your scholarly profile, which is the online information about your scholarly activities that is available to others. We will explain strategies that you can use to update and maintain your profile, as well as some tools that can help you find information to assess your scholarly impact.
Bibliometrics

• “[T]he application of mathematics and statistical methods to books and other media of communication” (Pritchard, 1969, p.348).
• Introduced as a way to determine the impact of specific journals in fields and then rank those that are most influential by field.

Alfred
http://campusguides.lib.utah.edu/bibliometrics

Bibliometrics is a branch of statistics concerned with measuring the use of media of communication. Originally, it was introduced as a way for helping people decide which journals they should publish in based on which journals had the most articles cited over a given period of time. Now, however, bibliometrics is also applied to learn more about individual scholars' contributions to their field.

Learning how to use bibliometrics tools can help you more easily promote your own scholarship and also understand the influence your scholarship has had on others. These tools can give you statistical information that you can include in tenure or post-tenure reviews, and can also help you identify people with similar interests who are citing and using your work.

Google Scholar allows researchers to set up a scholarly profile that will come up when people search for your name. The profile gives information about the articles published and who has cited them.

Now that you have created your ORCID, we are going to take a minute to set up your Google Scholar Profile

1. First, sign to your Google account, or create one if you don't yet have one. We recommend that you use a personal account, not an account at your employer, so that you can keep your profile for as long as you wish.

2. Once you've signed in to your Google account, the Citations sign up form will ask you to confirm the spelling of your name, and to enter your affiliation, interests, etc. We recommend that you also enter your university email address which would make your profile eligible for inclusion in Google Scholar search results.
3. On the next page, you'll see groups of articles written by people with names similar to yours. Click "Add all articles" next to each article group that is yours, or "See all articles" to add specific articles from that group. If you don't see your articles in these groups, click "Search articles" to do a regular Google Scholar search, and then add your articles one at a time. Feel free to do as many searches as you like.

4. Once you're done with adding articles, it will ask you what to do when the article data changes in Google Scholar. You can either have the updates applied to your profile automatically, or you can choose to review them beforehand. In either case, you can always go to your profile and make changes by hand.

5. Finally, you will see your profile. This is a good time to add a few finishing touches - upload your professional looking photo, visit your university email inbox and click on the verification link, double check the list of articles, and, once you're completely satisfied, make your profile public. Voila - it's now eligible to appear in Google Scholar when someone searches for your name!
Alfred

Has everyone seen the Find a Researcher page at the U?

https://faculty.utah.edu/findaresearcher/

This is another reason it is important to build a Google Scholar profile—people at the U and from the community can access your profiles through this portal.

Notice on the right hand side a link to Google Scholar, VP for Research, etc.
Lorelei: One of the other important tools that bibliometrics can offer is helping us see who is citing our work. One great database that we can use to do this is Scopus.

1. To get to Scopus, go to the library homepage at lib.utah.edu.
2. Click on the Research Databases tab above the search box. Click on S and navigate to Scopus
3. Click on the Author Search at the top of the page, and enter as much information as you have about the author who interests you.
4. Once you search, you will see a list of authors matching the criteria that you selected.
5. If you click on the author name, you will get a profile of that author, allowing you to confirm his or her identity.
6. From here, you have a few options to drill down to citation level data. For instance, you can click on the number next to documents to see the documents that are included in Scopus and how many times each has been cited.
7. Next to this, you can use the link to the Author Evaluator to see in which publications the author has been published, a graph of his or her H index, and...
then a chart of the number of citations has received per year since 1996

Below that, you can click on View citation overview to see a chart showing each of the author’s publications and how many times it has been cited. You can choose the years under examination, and can also eliminate self citations

This information is also available on page 8 of our handout, which you should have received ahead of time

You can also use Scopus to get specific information about articles:
1. Instead of doing the author search, this time choose the document search tab in Scopus
2. Once you find the document, you can click on it to see the title, authors, year and journal of publication, and the number of times it has been cited.
Scopus can also help you find information about journals in which to publish. To explore these options:

1. Go to the Sources link
2. Click on the Subject Area dropdown to choose Subject Area, Title, or another metric
3. Enter the title or subject area
4. The subject area will populate the list with a variety of metrics about the journal
Scopus has three major measures for assessing the scholarly impact of journals:

CiteScore is the number of citations received by a journal in one year to documents published in the three previous years, divided by the number of documents indexed in Scopus published in those same three years. (https://service.elsevier.com/app/answers/detail/a_id/14880/supporthub/scopus/kw/metrics/)

SciMago Journal Ranking or SJR JR is weighted by the prestige of a journal. Subject field, quality, and reputation of the journal have a direct effect on the value of a citation. (https://service.elsevier.com/app/answers/detail/a_id/14883/kw/metrics/support hub/scopus/related/1/)

Source Normalized Impact per Paper SNIP measures a source’s contextual citation impact by weighting citations based on the total number of citations in a subject field. It helps you make a direct comparison of sources in different subject fields.
SNIP takes into account characteristics of the source's subject field, which is the set of documents citing that source. SNIP especially considers:
(https://service.elsevier.com/app/answers/detail/a_id/14884/kw(metrics/support
hub/scopus/related/1/)
The frequency at which authors cite other papers in their reference lists
The speed at which citation impact matures
The extent to which the database used in the assessment covers the field’s literature
SNIP is the ratio of a source’s average citation count per paper and the citation potential of its subject field.

Another important thing to remember is that these tools do not index everything. Most citation indexes do not index books, or dissertations and theses. Instead, the focus primarily on articles. For instance, the citation count from Web of Science will only include the number of times the publication was cited by articles covered within the Web of Science. Web of Science does not count citations from every journal published around the world, nor does it count citations from books, dissertations/theses, patents, technical reports or other types of publications. These databases also tend to index more journals in medicine and the hard sciences. If you have published lots of books, you may have to rely more on Google Scholar and plan to add these to your ORCID profile manually.
Lorelei how to find your own research and who is citing you

Another database that you can use to find similar information is called Web of Science. You can use Web of Science to search for authors of cited references.

1. To get to Web of Science, go to the library homepage at lib.utah.edu
2. Click on the arrow underneath the Basic Search and choose the Cited Reference Search
3. In the "Cited Author" box, type in the author's name as lastname firstinitial*
Example: Smith J*
Be aware: The best search is one in which you give the minimum amount of information – the more information you put in the search boxes, the less likely you’ll be able to find all the citing references. If the author’s name is prone to misspellings, also search for those specific misspellings.
4. In the results list, look for citations of interest, scrolling through the list to find both the variant citations as well as the correct citation.
5. Add the numbers in the "Citing Articles" column from both the correct citation and the variant citations together to get the total citation count for the publication.

Determine What Journal Articles Have Cited a Publication

Once the citation count is determined, the "who is citing the publication" information can be displayed.

Follow steps 1-4 above; mark all the citations of interest by clicking in the box on the left for each item (or using the "Select Page" button to select all items on the page).

Click on the "Finish Search" button, located at the top and bottom of the page, to retrieve the list of articles that cite the author's publications you selected.

Be Aware: The number of references in this results list may not match the citation count obtained in step 5 above. The University of Utah subscribes only to the Web of Science module and not the conference proceedings module. Citing conference proceedings are included in the Step 5 Citation Count but cannot be accessed by the University of Utah.

Use the "Analyze Results" feature to determine any trends in the citing set of articles; the "Analyze Results" link is located in the upper right of the results list.

Analyze by:

- Author to see if a particular person repeatedly cites the publication.
- Institution to see if a particular company/university repeatedly cite the publication.
- Publication Year to see when the majority of citations occurred, if citations are evenly spread out, and/or if the publication is no longer being cited.
- Source Title to see if citations are coming from a particular journal.
- Subject Category to see which fields find this publication of interest. Be Aware: Citing publications that are from the conference proceedings module, are not part of the data in the citation analysis reports.
The h-index, or Hirsch index, measures the impact of a particular scientist rather than a journal. "It is defined as the highest number of publications of a scientist that received h or more citations each while the other publications have not more than h citations each." For example, a scholar with an h-index of 5 had published 5 papers, each of which has been cited by others at least 5 times. The links below will take you to other areas within this guide which explain how to find an author's h-index using specific platforms.

NOTE: An individual's h-index may be very different in different databases. This is because the databases index different journals and cover different years. For instance, Scopus only considers work from 1996 or later, while the Web of Science calculates an h-index using all years that an institution has subscribed to. (So a Web of Science h-index might look different when searched through different institutions.)
Top Ranked Journals (Web of Science aka Clarivate)

<table>
<thead>
<tr>
<th>Full Journal Title</th>
<th>JCR Abbreviated Title</th>
<th>ISSN</th>
<th>Total Cites</th>
<th>Journal Impact Factor</th>
<th>5 Year Impact Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature Nanotechnology</td>
<td>NAT NANOTECHNOL</td>
<td>1748-3387</td>
<td>49,814</td>
<td>38.966</td>
<td>44.323</td>
</tr>
<tr>
<td>ADVANCED MATERIALS</td>
<td>ADV MATER</td>
<td>0930-9645</td>
<td>160,622</td>
<td>19.791</td>
<td>19.615</td>
</tr>
<tr>
<td>Nano Today</td>
<td>NANO TODAY</td>
<td>1748-0133</td>
<td>8,131</td>
<td>17.476</td>
<td>19.234</td>
</tr>
<tr>
<td>NANO LETTERS</td>
<td>NANO LETT</td>
<td>1530-6984</td>
<td>141,715</td>
<td>12.712</td>
<td>14.298</td>
</tr>
<tr>
<td>Nano Energy</td>
<td>NANO ENERGY</td>
<td>2211-2855</td>
<td>13,433</td>
<td>12.343</td>
<td>12.294</td>
</tr>
<tr>
<td>ADVANCED FUNCTIONAL MATERIALS</td>
<td>ADV FUNCT MATER</td>
<td>1615-301X</td>
<td>67,188</td>
<td>12.124</td>
<td>12.352</td>
</tr>
<tr>
<td>Advanced Science</td>
<td>ADV SCI</td>
<td>2198-3844</td>
<td>1,550</td>
<td>9.034</td>
<td>9.067</td>
</tr>
<tr>
<td>Small</td>
<td>SMALL</td>
<td>1613-6810</td>
<td>35,042</td>
<td>8.643</td>
<td>8.296</td>
</tr>
</tbody>
</table>

Lorelei (skip if we run out of time)

You can also use Web of Science to make decisions about where you want to publish in the future. For instance, Web of Science will let you use a tool called Incites Journal Citation Reports. JCR has been used by academic departments across the world to see if their faculty are publishing in certain journals—tenure decisions have been based on this.

The primary measure that JCR uses to rank journals is called the impact factor. Impact Factor is calculated by dividing the number of citations in the JCR year by the total number of articles published in the two previous years. An Impact Factor of 1.0 means that, on average, the articles published one or two years ago have been cited one time. An Impact Factor of 2.5 means that, on average, the articles published one or two years ago have been cited two and a half times. Citing articles may be from the same journal; most citing articles are from different journals.

The Journal Impact Factor was developed by Eugene Garfield at the Institute for Scientific Information (ISI), now owned by Thomson Reuters.
Let's do a quick example.
Top ranked journals in ISI may not be the same as top ranked journals in a department. For example, PRT values publications in Schole, Human Dimensions of Wildlife, etc. These two journals are not indexed in ISI. Human Dimensions of Wildlife is not indexed in Eigenfactor.org but is indexed in Scopus

“the major publisher of JIF, says that the measure is a broad-brush indicator of a journal’s output -- and should not be used a proxy for the quality of any single paper or its authors.” Callaway, E. (2016, July 14). Publishing elite turns against impact factor.” Nature, 535, 210-211.
1. The Journal Impact Factor includes all of the citations during the current year for articles published in the journal in the last two years divided by the total number of articles published in the journal in the last two years.

2. The Immediacy Index measures how frequently the average article from a journal is cited within the same year as publication.

3. “A journal's Eigenfactor score is measured as its importance to the scientific community. Scores are scaled so that the sum of all journal scores is 100. In 2006, Nature had the highest score of 1.992. It is intended to reflect the influence and prestige of journals. Created to help capture the value of publication output vs. journal quality (i.e. the value of a single publication in a major journal vs. many publications in minor journals).” (http://guides.library.cornell.edu/c.php?g=32272&p=203396)

Article Influence Score: The mean Article Influence Score is 1.00. An Article Influence Score greater than 1.00 indicates that the articles in a journal have an above-average influence. Measures the average influence, per article, of the papers published in a journal. Calculated by dividing the Eigenfactor by the number of articles published in the journal.” (http://guides.library.cornell.edu/c.php?g=32272&p=203396).
For more information, visit: http://ipscience-help.thomsonreuters.com/incitesLiveJCR/glossaryAZgroup/g4/7769-TRS.html
Alfred: The reason that we suggest using multiple tools is because they will give you a better understanding of your or another scholar’s impact and visibility than using just a single tool. Web of Science does not cover the breadth of Scopus but it cover a greater range of years. Web of Science is great for faculty like Dr. PJ Stang in Chemistry or Dr. Sperry in Biology. Web of Science has recently added new metrics such as how many times has been viewed recently. Web of Science also goes back all the way to 1900. For example, Web of Science can provide information on Henry M. Eyring and provides an H-index for him. With more and more institutions having access to the complete backfile of databases such as Web of Science, are more people citing his research??

“This listing provides access to the Web of Knowledge search interface for the Web of Science Core Collection, and the Science, Social Sciences and Arts & Humanities Citation Indexes. The Web of Science Core Collection provides researchers access to the world’s most authoritative multidisciplinary content, and its indexes cover more than 12,000 of the world’s highest impact journals and 150,000 conference proceedings. The Science Citation Index fully indexes over 8,500 of the world’s leading scientific and technical journal across 150 disciplines from 1900 to the present. The Arts & Humanities Citation Index
indexes over 1,700 of the world's leading arts and humanities journals from 1975 to the present, and the Social Sciences Citation Index covers over 3,000 journals across 55 social science disciplines from 1900 to the present. To access the full benefits of Web of Science when accessing the database from off-campus (JCR, Incites, etc.), you may need to register for a Web of Science account and use the Web of Science login.

"Comprehensive: Scopus has the largest breadth and depth when compared to any other A&I database in the world. Timely updates from thousands of peer-reviewed journals, preliminary findings from millions of conference papers, and the thorough analysis in an expanding collection of books ensure you have the most up-to-date and highest quality interdisciplinary content available. Content indexed in Scopus is coming from 5,000 publishers from around the world.

Frequently updated: Never miss out on what's new in your field. Scopus is the only leading database that is updated daily rather than just weekly.

Unbiased: You can rely on our independent and expert content selection & advisory board (CSAB) who use strict criteria to vet the sources that Scopus includes. Learn more about our current board and content selection methods.

Reliable: By focusing on the world of research, you can trust that your Scopus search results will be accurate and relevant, and delivered to you quickly so you can spend less time searching and more time reading.

Content Policy and Selection

Scopus Content Selection and Advisory Board

Local Content Boards

Download the Scopus Content Coverage Guide PDF (1.60 MB)

Would you like to suggest your serial title for Scopus?

Scopus Title Suggestion Form

What content is included in Scopus?

Journals

More than 66 million records in Scopus, which includes:

Over 22,748 peer-reviewed journals, of which more than 3,476 are full open access (see the Scopus Source List)

Over 320 trade journals which reach a specific industry, trade or type of
business have been selected by the CSAB (HYPERLINK) for Scopus coverage. These journals are seldom refereed and do not always have an editorial board. Scientifically relevant articles are selected from trade journals for Scopus coverage if they meet the following criteria:

- Minimum of one page
- Minimum of one mentioned author

Articles-in-press (i.e., articles that have been accepted for publication) from more than 5,000 publishers, including Cambridge University Press, the Institute of Electrical and Electronics Engineers (IEEE), Springer-Nature, Wiley-Blackwell and, of course, Elsevier

For an overview of titles that are discontinued from Scopus coverage due to quality issues see the Scopus Discontinued Sources List

Books

Over 558 book serials are covered in Scopus, accounting for 34,000 individual book volumes and 1.3 million items

More than 138,000 non-serial books (see the book title list), available in Scopus and 20,000 added each year.

Subject areas: Focus on Social Sciences and Arts & Humanities, but also includes Science, Technology & Medicine (STM)

Coverage years: Back to 2005 (2003 for A&H)

Book types: Monographs, edited volumes, major reference works, and graduate level text books

Publishers can proactively suggest their book forward flow for Scopus indexing via the Scopus Book Suggestion Form

Conference papers

7.7 Million conference papers from over 97,100 worldwide events, containing:

High energy physics from the inSPIRE database

Computer science conferences and workshops from DBLP Computer Science Bibliography

Society meetings including the IEEE, American Chemical Society (ACS), Association for Computing Machinery (ACM), Society of Petroleum Engineers (SPE), The Minerals, Metals & Materials Society (TMS), American Geophysical Union (AGU), European Society of Cardiology (ESC), International Society for Chemotherapy (ISC), American Society for Information Security (ASIS), Japan Society of Mechanical Engineers (JSME), and many more
Conference paper selection is done based on the relevancy and quality of the conference in relation to the subject field. Priority is given to conference materials published by reputable organizations and publishers in relevant subject fields. Scopus does not consider individual conference material suggestions to be included in the database. Serial conference titles that have a registered ISSN can be suggested for Scopus coverage via the above mentioned title evaluation process.

Journal selection criteria

To be considered for review, all journal titles should meet all of these minimum criteria:

Consist of peer-reviewed content and have a publicly available description of the peer review process

Be published on a regular basis and have an International Standard Serial Number (ISSN) as registered with the ISSN International Centre

Should in general have a 2 year publication history

Have content that is relevant for and readable by an international audience, meaning: have references in Roman script and have English language abstracts and titles

Have a publicly available publication ethics and publication malpractice statement

CSAB members have deep subject matter expertise, and are committed to actively seeking out and selecting literature that meets the needs and standards of the research community that they represent. Journals eligible for review by the CSAB will be evaluated on the following criteria in five categories:

Patents

28 Million Patents from five patent offices:
US Patent & Trademark Office
European Patent Office
Japan Patent Office
World Intellectual Property Organization
UK Intellectual Property Office

Non-serial Books

Many content types—journals, conference proceedings and books—contribute, through citation activity, to the overall evaluation of scholarly research and therefore, should be included in Scopus. While journals and
conference proceedings are usually associated with timely dissemination of scholarly information, books typically provide a more thorough analysis of a specific (or broad) topic. By having books included in Scopus, we continue to connect the citation patterns of journals, conference proceedings and book content. This is achieved through:

Improve: Research within Arts & Humanities and Social Sciences is frequently published in books rather than journals. By including books in Scopus these subject fields become more complete, as do the author profiles and h-index of researchers working in the A&H and Social Sciences.

Enhance: Simply by having the books content in Scopus, makes them more discoverable.

Measure: Because books often cite journals, having books included in Scopus makes the citation counts of journals more accurate. And, we are able to further measure the impact of those books.

Increase: For research assessment, the addition of books gives researchers within the A&H the opportunity to better show their full scientific output in their Author Profiles.

Open Access Journals
Out of the 21,500+ active journals indexed in Scopus, more than 3,400 are listed as open access (OA). In Scopus, journals are identified as OA if they are registered with either the Directory of Open Access Journals or the Directory of Open Access Scholarly Resources, and are the following OA journal types:

Gold OA & Gold (waived) Journals: Journals in which an Article Processing Charge (APC) has been paid and all articles are available online without any restrictions

Subsidized Journals: Journals which do not charge an APC, but instead are subsidized by other means (including university, government, agency, corporate sponsorship, print subscriptions, and advertising)

Note that, in Scopus, OA is only recognized at the journal level and not at the article level, which means the following journal types are not identified in Scopus as OA:

Hybrid OA Journals: Subscription-based journals that offer an APC-based OA option

Delayed Hybrid OA Journals: Subscription-based journals which provide free online access upon the expiry of an embargo period, following the initial article publication date

Subscription Journals: Journals which cover publication costs through access tolls such as subscription costs
To see the full list of OA journals in Scopus, download the Scopus Source List and filter column Q: ‘Open Access status,’ by OA status. Note: the Scopus title list is updated three to four times per year which may result in minor and temporary discrepancies in a journal’s OA status. You can also browse Scopus’ OA journals via the Browse Sources tab on Scopus.com.
ORCID

http://campusguides.lib.utah.edu/orcid

http://orcid.org/

Lorelei
One of the things we recommend that everyone sign up for is an ORCID ID. ORCID is an open source registry that provides each researcher who registers with a unique identifier. Like an ISBN for a book or an ISSN for a journal, ORCID provides a number for a faculty member. Including the ORCID in articles or other research projects can help you make sure that your complete publication history is being accurately attributed to you. ORCID also allows the researcher to keep track of his or her research by putting the number on documents, like grant manuscripts.

ORCIDs can be filled out and provide a great deal of info on a faculty member, see Les Podlog’s http://orcid.org/0000-0001-5012-9118 Note that Les imported his articles from Scopus which is an easy thing to do and one of the projects librarians can help with.

ORCID has been endorsed by many groups and I believe ORCID will be one of the standards used in the future and is being piloted by NSF and NIH and is built into ScienCV https://www.youtube.com/watch?v=G_cKSRr7TJ4&feature=youtu.be ORCiDs are requires by some publishers including PLOS, Nature Group, etc.
Now, let’s go ahead and set up our ORCIDs. We are going to start at http://orcid.org/ We will click on the blue “For Researchers” button and then choose “Register for an ORCID ID.

You will be asked to fill in some basic information, including your name and email address. Once you have verified your account, you can sign in, and you will see a page that lists your name and asks you to add additional information to your ORCID. To add your publications, click on the Add Works link and choose the Search & link option.

sciencv
Lorelei,

Do this as a group. Alfred is walking around to help.

On next page, you will see a list of places that you can choose to import information from to your ORCID account. We recommend starting with Scopus to ORCID. Click on the blue title link to begin. Scopus is a database that the university subscribes to. We will show it to you more in depth shortly.

Once you choose this option, Scopus will search your name, and you will be asked to choose the Scopus profile that is yours. You will know because it will have your current and/or prior institutions listed under affiliation and list the subject areas in which you publish. Select the check box next to you the profile and choose next. Note: You may occasionally have more than one profile to choose if you have used variants of your name when you publish.

Next, you will be guided through a series of steps that will confirm that Scopus is importing the correct publications for you.
Once you get to the end of these steps, you can check to make sure your ORCID profile is correct or to add additional information by signing in again at orcid.org. Once you have your ORCID ID, people can search for you or you can search for others on the ORCID page, or you can add your ORCID to grant applications or other publications.

You can also add publications manually by going to your ORCID profile, choosing Add Works and then choosing the Add Manually option.

What happens if my journal is not indexed in Scopus. You can fill out form here: http://suggestor.step.scopus.com/suggestTitle/step1.cfm

What happens if I have two author name and want to create one name,

How do I request corrections to author details
https://help.elsevier.com/app/answers/detail/a_id/2321/p/8150/related/1/session/L2F2LzEvdGlzS8xNDg3Nzg1MzlxL3NpZC84Nm5yZVVibg%3D%3D
Another nice thing about the ORCID is that it allows you to organize your publication data once and then reuse it in multiple platforms. For instance, Web of Science, another popular citation databases can use your ORCID to import into Researcher ID, which is the Web of Science unique identifier. Although it takes some time in the beginning, creating these profiles and tying them together allows people to access your publications in multiple platforms and makes sure that they are more easily discoverable.

https://clarivate.com/products/researcherid/orcid-integration/
ORCID to ResearcherID

Add ORCID publications to My Publications

Return to My Researcher Profile

Exchange Profile Data Between ResearcherID and ORCID | Directly link Publications to ORCID

ORCID Activates: It's seamlessly relevant
Select records or enter a range of records and add them to your list. Up to 100 records may be selected at a time. More information

[Table of publications]

ORCID: 0000-0002-8191-19

Add

These publications added to My Publications will appear in the profile section of My Publications. Click on the Manage Profile button in the top right corner of the page and select the Publications link to change the privacy settings.

The Willard Marriott Library
THE UNIVERSITY OF UTAH
50 All You Need
ResearcherID Auto-Updated
Ways to Import FAR Data

In the same way that you used Scopus to import data into your ORCID, you can use it to important data into your FAR
https://support.faculty.utah.edu/import-my-data/

You can see a list of tutorials created here:
https://support.faculty.utah.edu/video-tutorials/

We will going into further details about Scopus, Academic Analytics, and PubMed later

The info you have needs a slight modification. Also note that faculty can download their publication data from Scopus, PubMed and Academic Analytics into their Annual Faculty Activity Report (FAR) and for use on their Faculty Profiles (both accessed via https://faculty.utah.edu) School of Medicine faculty can download PubMed data into MBM, used on academic profiles and Find a Doctor (https://uofuhealth.utah.edu/mbm/).
Also our contact for training has changed to be Mily Iriarte-Ahon (mily.iriarte-ahon@hsc.utah.edu)
<table>
<thead>
<tr>
<th>ORCiD</th>
<th>Unique Researcher Identifier, list of works and CV information</th>
<th>*Non-profit</th>
<th>*Publisher- and funder-recognized</th>
<th>*You have control over content and links.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Scholar</td>
<td>Researcher Profile, list of works, citation metrics</td>
<td>*For profit</td>
<td>*You have some control over content and links</td>
<td></td>
</tr>
<tr>
<td>Impactstory</td>
<td>Impactstory is an open-source website that helps researchers explore and share the online impact of their research with data-driven stories.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACADEMIA</td>
<td>Researcher Profile, list of works, citation metrics</td>
<td>*For profit</td>
<td>*You have some control over content and links</td>
<td></td>
</tr>
<tr>
<td>RePB</td>
<td>Researcher Profile, list of works, platform-specific metrics</td>
<td>*For profit</td>
<td>*You have some control over content and links</td>
<td></td>
</tr>
</tbody>
</table>

Slide excerpted from https://vtechworks.lib.vt.edu/bitstream/handle/10919/78557/Get%20Noticed-Managing%20your%20scholarly%20career%20in%20an%20age%20of%20metrics%20social%20media%20and%20open%20research%20-%20June%202012-13%202017.pptx?sequence=13&isAllowed=y
In addition to talking about Web of Science, we also wanted to say a little bit about some other online tools that are commonly being used by scholars to share and promote their research. One of these is Mendeley. Mendeley is a desktop-based client that allows you to manage PDFs that you find and also to download them to your machine, so you will have to download it to your machine. Go to www.mendeley.com and click the red Create An Account button.

To build your profile, start by clicking on your name in the upper right corner of the screen. Scroll down to the part of your profile that says Publications and click the Add button. You can add your publications here and other members can see them. Mendeley is primarily used as a bibliographic management system though, so you might not want to invest time in this if you never plan to use these tools.

There are other tools, like ResearchGate and Academia.edu that are gaining in popularity. These tools are commercial ones that work more like social networking sites to connect researchers with common interests. The idea is that you would create a profile, upload your papers, and then get in contact with other scholars in the same field.
There are upsides and downsides to these tools. For instance, they can be a good way to disseminate your research to people who cannot afford to get to it. However, you have to be careful to check when you put up a journal article or a book chapter that it does not violate copyright agreements. Both of these tools are also private for-profit companies whose interest is in selling data, so there is no guarantee that your material will remain freely available.

If you would like a safe place to keep your preprints or articles, we recommend that you consider putting your materials in our online repository, USpace, which our author services department can help you with. Then, if you want to promote or link these tools via Twitter or Facebook of other tools, you can do that from USpace.

For more info, see

http://collections.plos.org/altmetrics
Takeaways

• Registered for an ORCID, Google Author Profile, and ResearcherID.
• Reviewed who is citing your work in multiple databases.
• Learned about resources for future work.
Alfred

Now we would like to give you a little bit of time to play with these tools while we are available to help.